Перевод: со всех языков на английский

с английского на все языки

simultaneous patent

  • 1 патент, издаден едновременно с друг патент

    simultaneous patent
    simultaneous patents

    Български-Angleščina политехнически речник > патент, издаден едновременно с друг патент

  • 2 патент, выданный одновременно с другим патентом

    Универсальный русско-английский словарь > патент, выданный одновременно с другим патентом

  • 3 Saxby, John

    [br]
    b. 17 August 1821 Hurstpierpoint, Sussex, England
    d. 22 April 1913 Hassocks, Sussex, England
    [br]
    English railway signal engineer, pioneer of interlocking.
    [br]
    In the mid-1850s Saxby was a foreman in the Brighton Works of the London Brighton \& South Coast Railway, where he had no doubt become familiar with construction of semaphore signals of the type invented by C.H. Gregory; the London-Brighton line was one of the first over which these were installed. In the 1850s points and signals were usually worked independently, and it was to eliminate the risk of accident from conflicting points and signal positions that Saxby in 1856 patented an arrangement by which related points and signals would be operated simultaneously by a single lever.
    Others were concerned with the same problem. In 1855 Vignier, an employee of the Western Railway of France, had made an interlocking apparatus for junctions, and in 1859 Austin Chambers, who worked for the North London Railway, installed at Kentish Town Junction an interlocking lever frame in which a movement that depended upon another could not even commence until the earlier one was completed. He patented it early in 1860; Saxby patented his own version of such an apparatus later the same year. In 1863 Saxby left the London Brighton \& South Coast Railway to enter into a partnership with J.S.Farmer and established Saxby \& Farmer's railway signalling works at Kilburn, London. The firm manufactured, installed and maintained signalling equipment for many prominent railway companies. Its interlocking frames made possible installation of complex track layouts at increasingly busy London termini possible.
    In 1867 Saxby \& Farmer purchased Chambers's patent of 1860, Later developments by the firm included effective interlocking actuated by lifting a lever's catch handle, rather than by the lever itself (1871), and an improved locking frame known as the "gridiron" (1874). This was eventually superseded by tappet interlocking, which had been invented by James Deakin of the rival firm Stevens \& Co. in 1870 but for which patent protection had been lost through non-renewal.
    Saxby \& Farmer's equipment was also much used on the European continent, in India and in the USA, to which it introduced interlocking. A second manufacturing works was set up in 1878 at Creil (Oise), France, and when the partnership terminated in 1888 Saxby moved to Creil and managed the works himself until he retired to Sussex in 1900.
    [br]
    Bibliography
    1856, British patent no. 1,479 (simultaneous operation of points and signals). 1860, British patent no. 31 (a true interlocking mechanism).
    1867, jointly with Farmer, British patent no. 538 (improvements to the interlocking mechanism patented in 1860).
    1870, jointly with Farmer, British patent no. 569 (the facing point lock by plunger bolt).
    1871, jointly with Farmer, British patent no. 1,601 (catch-handle actuated interlocking) 1874, jointly with Farmer, British patent no. 294 (gridiron frame).
    Further Reading
    Westinghouse Brake and Signal Company, 1956, John Saxby (1821–1913) and His Part in the Development of Interlocking and of the Signalling Industry, London (published to mark the centenary of the 1856 patent).
    PJGR

    Biographical history of technology > Saxby, John

  • 4 Edison, Thomas Alva

    [br]
    b. 11 February 1847 Milan, Ohio, USA
    d. 18 October 1931 Glenmont
    [br]
    American inventor and pioneer electrical developer.
    [br]
    He was the son of Samuel Edison, who was in the timber business. His schooling was delayed due to scarlet fever until 1855, when he was 8½ years old, but he was an avid reader. By the age of 14 he had a job as a newsboy on the railway from Port Huron to Detroit, a distance of sixty-three miles (101 km). He worked a fourteen-hour day with a stopover of five hours, which he spent in the Detroit Free Library. He also sold sweets on the train and, later, fruit and vegetables, and was soon making a profit of $20 a week. He then started two stores in Port Huron and used a spare freight car as a laboratory. He added a hand-printing press to produce 400 copies weekly of The Grand Trunk Herald, most of which he compiled and edited himself. He set himself to learn telegraphy from the station agent at Mount Clements, whose son he had saved from being run over by a freight car.
    At the age of 16 he became a telegraphist at Port Huron. In 1863 he became railway telegraphist at the busy Stratford Junction of the Grand Trunk Railroad, arranging a clock with a notched wheel to give the hourly signal which was to prove that he was awake and at his post! He left hurriedly after failing to hold a train which was nearly involved in a head-on collision. He usually worked the night shift, allowing himself time for experiments during the day. His first invention was an arrangement of two Morse registers so that a high-speed input could be decoded at a slower speed. Moving from place to place he held many positions as a telegraphist. In Boston he invented an automatic vote recorder for Congress and patented it, but the idea was rejected. This was the first of a total of 1180 patents that he was to take out during his lifetime. After six years he resigned from the Western Union Company to devote all his time to invention, his next idea being an improved ticker-tape machine for stockbrokers. He developed a duplex telegraphy system, but this was turned down by the Western Union Company. He then moved to New York.
    Edison found accommodation in the battery room of Law's Gold Reporting Company, sleeping in the cellar, and there his repair of a broken transmitter marked him as someone of special talents. His superior soon resigned, and he was promoted with a salary of $300 a month. Western Union paid him $40,000 for the sole rights on future improvements on the duplex telegraph, and he moved to Ward Street, Newark, New Jersey, where he employed a gathering of specialist engineers. Within a year, he married one of his employees, Mary Stilwell, when she was only 16: a daughter, Marion, was born in 1872, and two sons, Thomas and William, in 1876 and 1879, respectively.
    He continued to work on the automatic telegraph, a device to send out messages faster than they could be tapped out by hand: that is, over fifty words per minute or so. An earlier machine by Alexander Bain worked at up to 400 words per minute, but was not good over long distances. Edison agreed to work on improving this feature of Bain's machine for the Automatic Telegraph Company (ATC) for $40,000. He improved it to a working speed of 500 words per minute and ran a test between Washington and New York. Hoping to sell their equipment to the Post Office in Britain, ATC sent Edison to England in 1873 to negotiate. A 500-word message was to be sent from Liverpool to London every half-hour for six hours, followed by tests on 2,200 miles (3,540 km) of cable at Greenwich. Only confused results were obtained due to induction in the cable, which lay coiled in a water tank. Edison returned to New York, where he worked on his quadruplex telegraph system, tests of which proved a success between New York and Albany in December 1874. Unfortunately, simultaneous negotiation with Western Union and ATC resulted in a lawsuit.
    Alexander Graham Bell was granted a patent for a telephone in March 1876 while Edison was still working on the same idea. His improvements allowed the device to operate over a distance of hundreds of miles instead of only a few miles. Tests were carried out over the 106 miles (170 km) between New York and Philadelphia. Edison applied for a patent on the carbon-button transmitter in April 1877, Western Union agreeing to pay him $6,000 a year for the seventeen-year duration of the patent. In these years he was also working on the development of the electric lamp and on a duplicating machine which would make up to 3,000 copies from a stencil. In 1876–7 he moved from Newark to Menlo Park, twenty-four miles (39 km) from New York on the Pennsylvania Railway, near Elizabeth. He had bought a house there around which he built the premises that would become his "inventions factory". It was there that he began the use of his 200- page pocket notebooks, each of which lasted him about two weeks, so prolific were his ideas. When he died he left 3,400 of them filled with notes and sketches.
    Late in 1877 he applied for a patent for a phonograph which was granted on 19 February 1878, and by the end of the year he had formed a company to manufacture this totally new product. At the time, Edison saw the device primarily as a business aid rather than for entertainment, rather as a dictating machine. In August 1878 he was granted a British patent. In July 1878 he tried to measure the heat from the solar corona at a solar eclipse viewed from Rawlins, Wyoming, but his "tasimeter" was too sensitive.
    Probably his greatest achievement was "The Subdivision of the Electric Light" or the "glow bulb". He tried many materials for the filament before settling on carbon. He gave a demonstration of electric light by lighting up Menlo Park and inviting the public. Edison was, of course, faced with the problem of inventing and producing all the ancillaries which go to make up the electrical system of generation and distribution-meters, fuses, insulation, switches, cabling—even generators had to be designed and built; everything was new. He started a number of manufacturing companies to produce the various components needed.
    In 1881 he built the world's largest generator, which weighed 27 tons, to light 1,200 lamps at the Paris Exhibition. It was later moved to England to be used in the world's first central power station with steam engine drive at Holborn Viaduct, London. In September 1882 he started up his Pearl Street Generating Station in New York, which led to a worldwide increase in the application of electric power, particularly for lighting. At the same time as these developments, he built a 1,300yd (1,190m) electric railway at Menlo Park.
    On 9 August 1884 his wife died of typhoid. Using his telegraphic skills, he proposed to 19-year-old Mina Miller in Morse code while in the company of others on a train. He married her in February 1885 before buying a new house and estate at West Orange, New Jersey, building a new laboratory not far away in the Orange Valley.
    Edison used direct current which was limited to around 250 volts. Alternating current was largely developed by George Westinghouse and Nicola Tesla, using transformers to step up the current to a higher voltage for long-distance transmission. The use of AC gradually overtook the Edison DC system.
    In autumn 1888 he patented a form of cinephotography, the kinetoscope, obtaining film-stock from George Eastman. In 1893 he set up the first film studio, which was pivoted so as to catch the sun, with a hinged roof which could be raised. In 1894 kinetoscope parlours with "peep shows" were starting up in cities all over America. Competition came from the Latham Brothers with a screen-projection machine, which Edison answered with his "Vitascope", shown in New York in 1896. This showed pictures with accompanying sound, but there was some difficulty with synchronization. Edison also experimented with captions at this early date.
    In 1880 he filed a patent for a magnetic ore separator, the first of nearly sixty. He bought up deposits of low-grade iron ore which had been developed in the north of New Jersey. The process was a commercial success until the discovery of iron-rich ore in Minnesota rendered it uneconomic and uncompetitive. In 1898 cement rock was discovered in New Village, west of West Orange. Edison bought the land and started cement manufacture, using kilns twice the normal length and using half as much fuel to heat them as the normal type of kiln. In 1893 he met Henry Ford, who was building his second car, at an Edison convention. This started him on the development of a battery for an electric car on which he made over 9,000 experiments. In 1903 he sold his patent for wireless telegraphy "for a song" to Guglielmo Marconi.
    In 1910 Edison designed a prefabricated concrete house. In December 1914 fire destroyed three-quarters of the West Orange plant, but it was at once rebuilt, and with the threat of war Edison started to set up his own plants for making all the chemicals that he had previously been buying from Europe, such as carbolic acid, phenol, benzol, aniline dyes, etc. He was appointed President of the Navy Consulting Board, for whom, he said, he made some forty-five inventions, "but they were pigeonholed, every one of them". Thus did Edison find that the Navy did not take kindly to civilian interference.
    In 1927 he started the Edison Botanic Research Company, founded with similar investment from Ford and Firestone with the object of finding a substitute for overseas-produced rubber. In the first year he tested no fewer than 3,327 possible plants, in the second year, over 1,400, eventually developing a variety of Golden Rod which grew to 14 ft (4.3 m) in height. However, all this effort and money was wasted, due to the discovery of synthetic rubber.
    In October 1929 he was present at Henry Ford's opening of his Dearborn Museum to celebrate the fiftieth anniversary of the incandescent lamp, including a replica of the Menlo Park laboratory. He was awarded the Congressional Gold Medal and was elected to the American Academy of Sciences. He died in 1931 at his home, Glenmont; throughout the USA, lights were dimmed temporarily on the day of his funeral.
    [br]
    Principal Honours and Distinctions
    Member of the American Academy of Sciences. Congressional Gold Medal.
    Further Reading
    M.Josephson, 1951, Edison, Eyre \& Spottiswode.
    R.W.Clark, 1977, Edison, the Man who Made the Future, Macdonald \& Jane.
    IMcN

    Biographical history of technology > Edison, Thomas Alva

  • 5 Haddy, Arthur Charles

    [br]
    b. 16 May 1906 Newbury, Berkshire, England
    d. December 1989
    [br]
    English electronics engineer who developed Full Frequency Range Recording for the Decca Record Company and was instrumental in the development of stereo records.
    [br]
    He developed recording equipment for. the Crystallate Gramophone Company, becoming Chief Recording Engineer at Decca when Crystallate was taken over. Eventually he was made Technical Director of Decca Record Company Ltd, a position he held until 1980. The developments of good cutterheads accelerated due to contract work for the armed services during the Second World War, because an extended frequency range was needed. This necessitated the solution of the problem of surface noise, and the result became known publicly as the ffrr system. The experience gained enabled Haddy to pioneer European Long Play recording. Haddy started development of a practical stereo record system within the Decca group, and for economic reasons he eventually chose a solution developed outside his direct surveillance by Teldec. The foresight of Decca made the company an equal partner in the standards discussions during the late 1950s, when it was decided to use the American 45/45 system, which utilized the two side walls of the groove. The same foresight had led Decca to record their repertoire in stereo from 1954 in order to prepare for any commercialized distribution system. In 1967 Haddy also became responsible for cassette manufacture, which meant organizing the logistics of a tape-duplication plant.
    [br]
    Principal Honours and Distinctions
    OBE 1976.
    Bibliography
    Haddy's patents are a good description of some of his technical achievements; for example: UK patent no. 770,465 (greater playing time from a record by changing the groove pitch); UK patent no. 807,301 (using feedback to linearize a cutterhead); UK patent no. 810,106 (two-channel by simultaneous vertical and lateral modulation).
    Further Reading
    G.A.Briggs (ed.), 1961, Audio Biographies, Wharfedale Wireless Works, pp. 157–63. H.E.Roys, "The coming of stereo", Jour. AES 25 (10/11):824–7 (an appreciation of Haddy's role in the standardization of stereo recording).
    GB-N

    Biographical history of technology > Haddy, Arthur Charles

  • 6 Reading

       1) The Discovery of Truth Depends on the Thoughtful Reading of Authoritative Texts
       For the Middle Ages, all discovery of truth was first reception of traditional authorities, then later-in the thirteenth century-rational reconciliation of authoritative texts. A comprehension of the world was not regarded as a creative function but as an assimilation and retracing of given facts; the symbolic expression of this being reading. The goal and the accomplishment of the thinker is to connect all these facts together in the form of the "summa." Dante's cosmic poem is such a summa too. (Curtius, 1973, p. 326)
       The readers of books... extend or concentrate a function common to us all. Reading letters on a page is only one of its many guises. The astronomer reading a map of stars that no longer exist; the Japanese architect reading the land on which a house is to be built so as to guard it from evil forces; the zoologist reading the spoor of animals in the forest; the card-player reading her partner's gestures before playing the winning card; the dancer reading the choreographer's notations, and the public reading the dancer's movements on the stage; the weaver reading the intricate design of a carpet being woven; the organ-player reading various simultaneous strands of music orchestrated on the page; the parent reading the baby's face for signs of joy or fright, or wonder; the Chinese fortune-teller reading the ancient marks on the shell of a tortoise; the lover blindly reading the loved one's body at night, under the sheets; the psychiatrist helping patients read their own bewildering dreams; the Hawaiian fisherman reading the ocean currents by plunging a hand into the water; the farmer reading the weather in the sky-all these share with book-readers the craft of deciphering and translating signs....
       We all read ourselves and the world around us in order to glimpse what and where we are. We read to understand, or to begin to understand. We cannot do but read. Reading, almost as much as breathing, is our essential function. (Manguel, 1996, pp. 6-7)
       There is a pitched battle between those theorists and modellers who embrace the primacy of syntax and those who embrace the primacy of semantics in language processing. At times both schools have committed various excesses. For example, some of the former have relied foolishly on context-free mathematical-combinatory models, while some of the latter have flirted with versions of the "direct-access hypothesis," the idea that skilled readers process printed language directly into meaning without phonological or even syntactic processing. The problems with the first excess are patent. Those with the second are more complex and demand more research. Unskilled readers apparently do rely more on phonological processing than do skilled ones; hence their spoken dialects may interfere with their reading-and writing-habits. But the extent to which phonological processing is absent in the skilled reader has not been established, and the contention that syntactic processing is suspended in the skilled reader is surely wrong and not supported by empirical evidence-though blood-flow patterns in the brain are curiously different during speaking, oral reading, and silent reading. (M. L. Johnson, 1988, pp. 101-102)

    Historical dictionary of quotations in cognitive science > Reading

См. также в других словарях:

  • Simultaneous voice and data — Simultaneous voice and data, or SVD, is a telecommunications term that refers to transceiving both voice and primary data essentially simultaneously. [cite web |url=http://www.google.com/patents?id=OSgcAAAAEBAJ |title=US Patent 5,625,677… …   Wikipedia

  • Royalties — Not to be confused with Royal family. Royalty cheque. Royalties (sometimes, running royalties, or private sector taxes) are usage based payments made by one party (the licensee ) to another (the licensor ) for the right to ongoing use of an asset …   Wikipedia

  • telephone — telephoner, n. /tel euh fohn /, n., v., telephoned, telephoning. n. 1. an apparatus, system, or process for transmission of sound or speech to a distant point, esp. by an electric device. v.t. 2. to speak to or summon (a person) by telephone. 3.… …   Universalium

  • Negative index metamaterials — A negative index metamaterial causes light to refract, or bend, differently than in more common positive refractive index materials. Negative index metamaterials or negative index materials (NIM) are artificial structures where the refractive… …   Wikipedia

  • MPEG-1 — Moving Picture Experts Group Phase 1 (MPEG 1) Filename extension .mpg, .mpeg, .mp1, .mp2, .mp3, .m1v, .m1a, .m2a, .mpa, .mpv Internet media type audio/mpeg, video/mpeg Developed by ISO, IEC Type of format audio, vid …   Wikipedia

  • Mouse (computing) — A computer mouse with the most common standard features: two buttons and a scroll wheel, which can also act as a third button In computing, a mouse is a pointing device that functions by detecting two dimensional motion relative to its supporting …   Wikipedia

  • Chester Carlson — Chester Floyd Carlson Born February 8, 1906(1906 02 08) Seattle, Washington, United States Died September 19, 1968(1968 …   Wikipedia

  • Collaborative real-time editor — RTCE redirects here. For other uses, see RTCE (disambiguation). A collaborative editor is a form of collaborative software application that allows several people to edit a computer file using different computers. There are two types of… …   Wikipedia

  • Videoconferencing — See also: List of video telecommunication services and product brands A Tandberg T3 high resolution telepresence room in use (2008) …   Wikipedia

  • List of Sega arcade system boards — The following is a list of arcade system boards released by Sega. Contents 1 Sega G80 1.1 G80 Specifications 2 Sega System 1 2.1 System 1 Specifications …   Wikipedia

  • technology, history of — Introduction       the development over time of systematic techniques for making and doing things. The term technology, a combination of the Greek technē, “art, craft,” with logos, “word, speech,” meant in Greece a discourse on the arts, both… …   Universalium

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»